博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
狄利克雷过程(Dirichlet Process)
阅读量:5290 次
发布时间:2019-06-14

本文共 776 字,大约阅读时间需要 2 分钟。

0. 引入

现观察得到两个样本 θ1,θ2,来推测它们可能来自的分布:

  • 假设来自于连续型概率密度函数, θ1,θ2H(θ)
    • θ1,θ2 相等的概率为 0,p(θ1=θ2)=0
    • 概率为 0,不代表不可能发生,仍有发生的可能,只不过概率的测度为 0;(详见测度论相关知识)
    • 纵然二者仍有可能相等,但因其概率测度为 0,实际上我们也只能视二者为不同的值;
  • 假设来自于一种离散型概率质量函数,我们仍希望其具有与连续型分布函数相类似的形式,记此时的离散分布为 G,想要其与连续型概率密度函数形式相近,又不至于像连续型那样任意产生的两个样本几乎可以视为不相等,则需要 GDP(α,H),这就是狄利克雷过程(当然严格的 DP 不要求 H 一定为连续,也可以为离散,称其为,base measure);
    • α>0 的 scalar,控制 G 的离散程度,其值越小与不离散,
      • 极限思维法,什么情况下,G 会达到最离散的状态呢,即只有一个值(α=0),使用一个值去代表一个分布;
      • α=G=H

1. DP

一般而言,样本从一个分布中得到,xP(X|θ),也即我们可从一个分布中得到样本,不管这是几维的样本,总之是一个值;

但对于 DP 而言,GDP(α,H) 却是从分布得分布,产生的不是一个值,而是整个分布,从 base measure 产生一个 random discrete probability measure,最终产生的分布仍然是随机的,也即每次 draw(抽样)得到的都不一样。

那么这样的 G 需要满足什么样的特性呢,对任意一次 draw 得到的 G 做任意次的划分(α1,,αd),则 G(α1,,αd)Dir()(需要满足狄利克雷分布)

转载于:https://www.cnblogs.com/mtcnn/p/9422798.html

你可能感兴趣的文章
spring_远程调用
查看>>
js 中基本数据类型和引用数据类型 ,,,, js中对象和函数的关系
查看>>
登录服务器,首先用到的5个命令
查看>>
多米诺骨牌
查看>>
区间DP 等腰三角形
查看>>
mysql 存储引擎对索引的支持
查看>>
Linq 学习(1) Group & Join--网摘
查看>>
asp.net 调用前台JS调用后台,后台掉前台JS
查看>>
【转】iOS 宏(define)与常量(const)的正确使用-- 不错
查看>>
【转】iOS开发UI篇—iPad和iPhone开发的比较
查看>>
【转】Android底层库和程序
查看>>
OnContextMenu事件(转)
查看>>
Comparación para 2019 Nueva Lonsdor K518S y K518ISE
查看>>
论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)
查看>>
从今天开始
查看>>
Attribute(特性)与AOP
查看>>
第三次作业
查看>>
Codeforces 962 /2错误 相间位置排列 堆模拟 X轴距离最小值 前向星点双连通分量求只存在在一个简单环中的边...
查看>>
Matrix快速幂 模板
查看>>
laravel command调用方法命令
查看>>